sábado, 24 de septiembre de 2016

Ovalo Dado el Eje Mayor y Eje menor.



  Ovalo Dado el Eje Mayor  Eje menor.


Construir un óvalo conociendo su eje menor.














Los extremos del eje menor dado serán centros de dos de los cuatro arcos de este óvalo (O3 y O4) y cuyo radio será igual al propio eje menor. Trazamos una circunferencia auxiliar de diámetro igual al eje menor dado que cortará a su mediatriz en los puntos O2 y O1, centros de los dos arcos restantes. Los puntos de enlace se calculan uniendo centros y con ellos los radios de los arcos de centros O1 y O2, arcos que cortarán a la mediatriz del eje menor en A y B, extremos del eje mayor.

  




















Ovoide:

Construir un ovoide conociendo su eje.
Dado el eje AB lo dividimos en seis partes iguales siendo las partes 2ª y 5ª los centros O1 y O2 de la semicircunferencia y arco desigual. Con centro en la 2ª división y radio 2B, trazamos un arco que corta en O3 y O4, centros de los arcos iguales, a la prolongación del diámetro. El radio de la semicircunferencia es O1-A y sus extremos T1 y T2 puntos de enlace. El radio del arco desigual de centro O2 es O2-B. Para determinar los puntos de enlace T4 y T3 unimos O4 y O3 con O2 cortando en su prolongación al arco trazado con centro en O2. Los radios de los arcos iguales son O4-T4 o O3-T3.




SIMETRIA AXIAL:



















Simetría, un concepto que deriva del latín symmetrĭa, hace referencia a la correspondencia que se registra entre la posición, la forma y el tamaño de los componentes de un todo. Axial, por su parte, es aquello vinculado a un eje (la pieza que actúa como sostén de algo y que, en ciertos contextos, permite que un determinado objeto gire) Se conoce como simetría axial a la simetría que existe en torno a un eje cuando la totalidad de los semiplanos que se toman desde una determinada mediatriz exhiben las mismas características.











No hay comentarios:

Publicar un comentario